EPrime Programming How-To's, Tips and Tricks

Created by Shani Shalgi, August 2004, revised 2008. Please send your comments & additions to shanish@mscc.huji.ac.il
Please note this guide is not for EPrime beginners. Beginners should start with the online presentation, then the ‘Getting Started’ guide and then the ‘User’s Guide’. It is crucial to read the chapter on timing in the user's guide and any updates on timing issues on the EPrime web site.
1Configurations

1How to Send Codes to the BioSemi

2How to Configure the Response Boxes

3Very Important to Know

4Defining Variables

4Graceful Abort

5Programming How To’s & Tricks

5How to Display the number of Trials on the screen at the beginning of each trial

5How to Send a Code at Response Time to the Biosemi

5How to Send a Code at Response Time to the Biosemi if the Response Object does not terminate upon a response

6How to Write to a Text File

6How to Read a list of numbers or strings from an ASCII file

7How To Use String Inputs

7How to Populate a List at Runtime

8How to Retrieve a Field Value in a Specific Line in a List

8How to Pre-load images using the Canvas *

9How to Pre-load images without the use of Canvas *

10How to Display a Visual Stimulus for 1 Refresh Duration *

10How to Create Response Areas for Mouse Input on the Screen

11How To Rerun Error Trials

12How to Collect Input While InLine Script is Active

13How to Clear a Stimulus While Leaving More Time for Response

13How to Jump to The End of a Trial Based on an Incorrect Response

14How to Animate!

14How to Create Checkboxes on the Screen

15How to Run a List Based on User Input

15TIPS

15Good to Know

16Objects to Read About:

16Subjects to Read About

Notation:

<variable> - indicated your variable name/value should be placed here

anything in courier new font is inline code.

Sections denoted by a * are important for experiments in which timing is critical!

Configurations

The template.es and templateERP.es files referred to in the following sections are found in the Experiments folder.

How to Send Codes to the BioSemi

To get BioSemi to register a trigger code we need to send a code to the port and then send a "zero code" before the next code is sent (this is crucial). In order for the codes to be sampled by BioSemi, we need to wait some time after sending each code.
The Codes for starting/stopping recording using the BioSemi (defined in the ActView BioSemi configuration file) are:

254: STOP PAUSE - Start Recording

255: PAUSE

These codes should be used before and after every block so not to record breaks. Also the BioSemi has no STOP code, so the file must be stopped MANUALLY at the end of the experiment (just like a file has to be started manually)!

To send the start/pause codes to the BioSemi, I recommend declaring a routine in the user script:

' This subroutine takes minimum
' BIOSEMI_CODE_DURATION + SLEEP_FOR_ZERO ms

Sub sendBioSemi(code As Integer)

WritePort BIOSEMI_PORT, code

Sleep(BIOSEMI_CODE_DURATION)

WritePort BIOSEMI_PORT, 0

Sleep(SLEEP_FOR_ZERO)

End Sub

Where:
· BIOSEMI_PORT is a constant also declared in the user script and is the address of the port
· BIOSEMI_CODE_DURATION and SLEEP_FOR_ZERO are constants which specify for how long the codes will be sent.

· BIOSEMI_CODE_DURATION should be at least 1 millisecond longer than your BioSemi inter-sample-interval (1000/SamplingRate) – e.g. 1000/256Hz=3.9, BIOSEMI_CODE_DURATION would be 5ms. Since it is not recommended to record below 256Hz, a rule of thumb can be to use BIOSEMI_CODE_DURATION = 5ms for any sampling rate.

· SLEEP_FOR_ZERO should be should be at least 1 millisecond longer than twice BioSemi inter-sample-interval – e.g. sampling at 256Hz=3.9, SLEEP_FOR_ZERO would be 8ms. Since it is not recommended to record below 256Hz, a rule of thumb can be to use SLEEP_FOR_ZERO = 8ms for any sampling rate. (There is a need for a different duration for sending 0 due to BioSemi configuration).
Note that the rules of thumb apply in most cases, but when sending stimuli in smaller intervals would require shorter sleep times.
Call this function whenever you need to send a code to the BioSemi. Notice the function takes BIOSEMI_CODE_DURATION + SLEEP_FOR_ZERO ms.

The most recommended method for sending a stimulus code to the BioSemi is using the OnsetSignal/OffsetSignal of an object. This way, the code will be sent on the onset of the object:

Stim.OnsetSignalEnabled = True

Stim.OnsetSignalPort = BIOSEMI_PORT

Stim.OnsetSignalData = <a code>

Stim.OffsetSignalEnabled = True

Stim.OffsetSignalPort = BIOSEMI_PORT

Stim.OffsetSignalData = <a code> (usually 0)
Note that Stim should have a duration at least as long as BIOSEMI_CODE_DURATION, in order for the code to be sampled by the BioSemi (same goes for offset – there should be at least SLEEP_FOR_ZERO time before the next code is sent). However, if using the OnsetSignal/Offset is not possible, use can always use the sendBioSemi routine, just make sure you are take into account the time it takes.
See TemplateERP.es for implementation.

How to Configure the Response Boxes

There are 2 types of response boxes: The EPrime Serial box, which is the easiest to configure, and the Parallel port response boxes.

The EPrime serial box is not known for its timing accuracy. However, if exact milliseconds of response aren’t important, you can connect it to your experiment following these steps:

1. Add the Serial Box device into the experiment via the Devices tab of the Experiment object's property pages in E-Studio.

2. In the object collecting the response, add the Serial Box in the Property Pages:

a. Click on the Duration/Input tab

b. Click "Add"

c. Select the Serial Device

3. Set input properties for the Serial Device – Allowable (1-4), Correct, Time Limit, End Action

The parallel port boxes require some inline scripting to initialize and reset the port before and after each object that collects input using them.

1. Add the port device into the experiment via the Devices tab of the Experiment object's property pages in E-Studio. (Addition of the Port Device in E-Studio is addressed on pages 39-41 of the E-Prime Reference Guide.

2. The port devices properties should be:

Collection Mode: Presses only

Address: <decimal address of the port> + 1 (find it by selecting "System" from the Windows Control Panel, clicking on the Device Manager tab, and navigating to Ports. Select the parallel (LPT or printer) port, click the Properties button, and select the Resources tab. The address of the currently accessible port will be shown.)

Size: 16

Invert: No

Mask: -1

Emulate Device: [none]
3. In the object collecting the response, add the Port Device in the Property Pages:
a. Click on the Duration/Input tab

b. Click "Add"

c. Select the Port Device

d. Set input properties for the Port Device – Allowable (6 = button 1, 5 = button 2), Correct, Time Limit, End Action.

Very Important to Know

Defining Variables

Define each variable on a separate line!

If you "dim" multiple things on one line, for example:
Dim x, y, z As Integer
you are only specifying the type of z As integer. Since x and y have no types, they are treated as variants, and their actual value is set when it receives a value. This may cause BUGs (rounding, conversion, etc). Because of issues like this, PST encourages using only on Dim per line, specifically typing each object, and not using Variant unless required.
Graceful Abort

In case you need to stop an EPrime experiment in the middle safely, with all logging intact, use the GetUserBreakState function. The experimenter will be able to exit by pressing the SHIFT+CTRL buttons.

Inside every Trial procedure, add the following code in an inline:

If (GetUserBreakState <> 0) Then

Mouse.ShowCursor True

Dim r As Integer

r = AnswerBox("Please select one of the following options" & chr(10)+chr(13) &_

"(The data will be saved) :", "Continue", "Quit Block", "Quit Session")

If r = 2 Then

 TrialList.terminate

Elseif r = 3 Then

 TrialList.terminate

 abortExperiment = true

End If

Mouse.ShowCursor False

End If

SetUserBreakState 0 ' Reset user break for next blocks

Where ‘abortExperiment’ is a global variable declared in the user script and set to False when the experiment begins.

Then, outside the trial procedure, (inside the block procedure) add the following code:

If (abortExperiment = True) Then

 BlockList.Terminate

End If

See: template.es

Note that there is no way to use the Label object to jump outside of a procedure. A procedure is a timeline of events, hence when you jump to the end of the procedure you are skipping over the events that occur in one single trial. To jump outside a procedure you must terminate the List Object (List.Terminate) based on some criterion, like in the above example.

Programming How To’s & Tricks

Example files are from the E-Prime website, they also appear in EPrime Tools\EPrime Samples

How to Display the number of Trials on the screen at the beginning of each trial

1. In an inline at the beginning of your trial procedure, place the following code:

c.SetAttrib "TrialNum", c.GetAttrib(c.GetAttrib ("Running") & ".Sample")

c.SetAttrib "TotalTrial", <total number of trials>

2. Next place a TextDisplay Object following the InLine. The two attributes created in the script are referenced in the TextDisplay Object in bracket notation, as follows:

 Trial [TrialNum] of [TotalTrial]

How to Send a Code at Response Time to the Biosemi

Use the following method only if the object collecting the response terminates upon response. If it doesn’t, see the next section.

Assuming the object collecting the response is Stim, in an inline before the trial add the code:

Stim.OffsetSignalEnabled = true

Stim.OffsetSignalData = <response code>

After the presentation of Stim, you must add an inline which sleeps for a specified duration that is enough for BioSemi sampling, and turn the code off.

sleep(5)

writeport <port address>, 0
Note this codes waits 5 ms before running the rest of the trial/experiment.

How to Send a Code at Response Time to the Biosemi if the Response Object does not terminate upon a response

You will need to interrupt the currently running object to run the script that sends the trigger, then re-present the same object when more presentation time is required. The easiest way to handle this would be as follows:

1. Insert a copy of the stimulus object, following the actual stimulus on the procedure. Set the duration of this second object to an attribute. (To copy an object, drag it while holding down SHIFT). The new object should not collect a response.

2. Set the original object’s (the object collecting the response) End Action response to Terminate

3. Place an InLine with the WritePort script between the two objects (original and copy). Subtract the RT of the stimulus from the total duration of the intended stimulus display. This value will become the duration of the second object.

The following script could be used:

WritePort <port address>, <code>
If Stimulus.RT > 0 Then
 c.SetAttrib "Stim2Dur", x = TOTAL_STIM_TIME - Stimulus.RT
Else
 c.SetAttrib "Stim2Dur", 0
End If

On each trial, the Stim2Dur attribute would be resolved with the value found in the calculation above. If no response was made (i.e., if RT = 0 then the trial has already lasted for the total time, and the duration of the second screen will be set to zero).

To turn the code off, you must set the offset code of the copied object to 0, or if its duration is 0, sleep(5) and then WritePort <address>, 0 (see above section)

How to Write to a Text File

'Open file in append mode (the file can be opened at the

'beginning of the experiment and closed at its end)

Open "<FileName>.txt" For Append As #1

'write stimulus to the text file

Write #1, c.GetAttrib("Stimulus")

'Close text file

Close #1
The text file will be located in the directory where your .ebs file is stored.
Note: write #1, "hello" results in "hello" (with quotation marks). Use: Print #1, "hello" instead. For more information, take a look at the Print#, Write#, and Open# entries in the E-Basic help file.
See Example: WriteText.es

How to Read a list of numbers or strings from an ASCII file

You can read information into E-Prime from an ASCII file via the List Object. The Load Method on the List object has an option for "File". This method instructs the List to load its contents from the file specified by the List.Filename property. The file must be in tab-delimited, ASCII file format, and should contain the level data (i.e., attribute header data). If attributes exist in the file that are not defined in the GUI, these attributes are created.

For more information refer to Chapter 1 of the E-Prime Reference Guide page 45-53.
How To Use String Inputs

For example, when a subject is presented with a question and is asked to type a response. His response echo's to the display, so that they may see their response as they are typing.

In the Advanced property page of the Duration/Input tab for the object collecting the response:

· Set the MaxCount parameter on the to 255. The MaxCount parameter allows you to set the maximum number of keys allowed for input.

· Set the Termination Response property to {ENTER}. The Termination Response property designates the input to be used to terminate the input mask prior to reaching the maximum response count set in Max Count.

· In the Echo tab in the Advanced Properties, add the Display Device. Set the display device’s properties to (where on the screen, colors, font, etc). The echo tab permits the programmer to specify the device to which input will be echoed, and to set properties for that device.

For more information refer to the Advanced Device properties heading under section 1.3.1.2 in the E-Prime Reference Guide.

See example: StringInput.es

How to Populate a List at Runtime

1. Create an attribute in the list without a value (or use setAttrib in an inline, see below)

2. Add as many levels (lines) as needed into the list (or use addLevel, see below)

3. Use the List object’s SetAttrib method in an inline:

List1.SetAttrib rowNum, "AttributeName", "AttributeValue".

Notice this doesn’t create a new line, or a new attribute, only adds an attribute value to an existing line. If the attribute or line don’t exist, there will be a runtime error.

To add a level into the list at runtime:

List1.AddLevel 7

List1.SetWeight 7, 1

List1.SetProc 7, "TrialProc"

To add an attribute at runtime:

List1.SetAttrib 7, "Stimulus", "Z"

List1.SetAttrib 7, "CorrectAnswer", "1"

You may also manipulate the list at runtime using

Set List1.TerminateCondition = Cycles(1)

Set List1.ResetCondition = Samples(7)

Set List1.Order = SequentialOrder (/ RandomOrder / OfsetOrder(offset)…)

After manipulating the list, you must run the procedure:

List1.Reset
Please note: The list must exist with one empty line at least (the ID of the empty line is 1)

More information: List topic in the E-Basic help.
See example: StudyRecall.es

How to Retrieve a Field Value in a Specific Line in a List

For example, suppose you have a list with an attribute 'filename', so that each line has one unique file name as the value in this column. Now, you want to collect a user response, and based on the response, get the filename from line 2 of the list.

If you want to retrieve the value from a specific level of the List (and you do know beforehand which level you want to take the value from), you can use the List.GetAttrib command, where List refers to the name of the running List. This method works just like c.GetAttrib, except that it allows you to specify more parameters, including the level from which the value will be taken.

(Getting the attribute from the current running line can be done simply using c.getAttrib "attributeName")

Note: More information in the E-Basic Help, under the List.GetAttrib topic.

How to Pre-load images using the Canvas *

To assist in reducing the timing delays of an object (that are a result of loading an image from the disk – can be as much as 100ms!), the author of an experiment must preload the images. The most robust option is to use InLine script and the Canvas object. The Canvas object provides the ability to load an image and display it to the DisplayDevice in a few operations. The downside to using the Canvas is that it requires a lot of scripting - including
separate handling of input, responses, and logging. Further, there are a number of issues to consider when using multiple Canvas objects and dealing with video memory, system memory, and operating system swapping. Experiments that require very quick (< 50ms) transition between images and/or require many images per trial may be better suited to using the Canvas scripting object.

Declare the off-screen and onscreen canvases in the user script:

Dim cnvs

As Canvas

Dim targetCanvas
As Canvas
Initialize the canvases:

'**** Create the onscreen Canvas ***

Set cnvs = Display.Canvas

cnvs.FillColor=CColor("black")

'**** Create the off-screen canvases ****

Set targetCanvas = Display.createCanvas

targetCanvas.FillColor=CColor("black")

targetCanvas.clear

Inside the Trial procedure:

1. When preparing the trial:

targetCanvas.LoadImage stim

Image is loaded to the top left corner. We need to define 2 Rect Objects: StimLoadRect and StimRect (see Rect object in the E-Basic Help), both the size of the images to-be-loaded, but the StimRect at the (Left,Right, Top,Bottom) coordinates where the stimulus will be displayed. When we copy the image from the offline canvas to the online canvas, we will copy from StimLoadRect to StimRect.
2. To run the stimulus:

Display.WaitForVerticalBlank

c.setAttrib "StimOnset", clock.read

cnvs.copy targetCanvas, stimLoadRect, stimRect

sleep(stimDuration)
Display.WaitForVerticalBlank

Cnvs.clear ' or something else that erases the stimulus, can be done in the following trial

Note that stimDuration is the wanted stimulus duration – 1/2 a refresh rate, so that when we call Display.WaitForVerticalBlank we will not miss the next refresh.
How to Pre-load images without the use of Canvas *

An alternative to pre-loading an image using the canvas object, is to use the ImageDisplay or SlideImage objects. This still requires scripting, but a lot less that using the canvas object.

E-Studio permits image objects (ImageDisplay, SlideImage) to vary their contents by using an attribute reference [attrib] in the Filename property. When this is done, the object will load the contents of the file just prior to the object running. This operation can take a long time (100ms) since it requires
obtaining the file contents from hard disk. This loading time will increase the .OnsetDelay of the object and will require the object to start later than intended. The author of an experiment can alter the default loading behavior of an image object by having it load the image contents at the beginning of the trial. This way the image is loaded in the background while another object is displayed (e.g., a fixation). For example.

Using an ImageDisplay:

' Assign the new filename

StimulusImageDisplay.Filename = <filename>

' Instruct the object to load the image contents into its

' internal structures

StimulusImageDisplay.Load

Using a Slide: see the example file.

See Example: PreLoadImage.es

Note: (Advanced users only!) If the number of files you are displaying is small (up to 5, for example), you may create a separate object for each of them at the beginning of the experiment and run these objects before the instructions, so that all stimuli are loaded. Then during the experiment you run these objects depending which trial is run <object>.run. HOWEVER, notice that you will have to log the time yourself, and will need another object for collecting input. See MMN_Template for an example.

How to Display a Visual Stimulus for 1 Refresh Duration *

In order to do this, you must pre-load the stimulus using a canvas object. Please see the How to Pre-load images using the Canvas section.

When running the stimulus:

Display.WaitForVerticalBlank

c.setAttrib "StimOnset", clock.read

cnvs.copy targetCanvas, stimLoadRect, stimRect

sleep(2) ' to make sure the next vertical blank will be reached

Display.WaitForVerticalBlank

c.setAttrib "StimOffset", clock.read

cnvs.clear ' or copy another image to cnvs.

You should check if StimOffset-StimOnset is one refresh cycle.

How to Turn Off Any of the Screens in the Feedback Object

Simply open the corresponding tab (‘no response’, ‘correct’, etc) of the FeedbackDisplay object and set the Enabled property to "No".

More Information in the E-Prime Reference Guide pages 70 and 77.

How to Create Response Areas for Mouse Input on the Screen

To create a response area for mouse input, use The experiment uses HitTest, method of the SlideState object, which returns the string name of a SlideImage or SlideText object at specified coordinates.

1. In an inline before the experiment begins, make the mouse curser visible at run-time:

Mouse.ShowCursor true
2. Define a slide object in the trial procedure which collects responses using the mouse and terminates upon response, but do not define a Correct Response. (Leave allowable as {any}). On the slide, define objects (Images or Text) where the subject can press. Each slide object should be given a unique name via its Properties window.

3. In the trial list, add an CorrectAnswer attribute for the trials, and in it specify the name of the correct object which should be clicked on in the slide (case sensitive)

4. After the Slide object, insert an inline with the following code:

'Designate "theState" as the Default Slide State, which is the

'current, ActiveState on the Slide object "Stimulus"

Dim theState as SlideState

Set theState = Stimulus.States("Default")

Dim strHit As String

Dim theMouseResponseData As MouseResponseData

'Was there a response?

If Stimulus.InputMasks.Responses.Count > 0 Then

'Get the mouse response

Set theMouseResponseData = CMouseResponseData(Stimulus.InputMasks.Responses(1))

'Determine string name of SlideImage or SlideText

'object at mouse click coordinates.

'Assign that value to strHit

strHit = theState.HitTest(theMouseResponseData.CursorX, theMouseResponseData.CursorY)

'Compare string name where mouse click occurred to

'CorrectAnswer attribute on each trial, and score

'response

'NOTE: This comparison is case sensitive

If strHit = c.GetAttrib("CorrectAnswer") Then

 Stimulus.ACC = 1

Else

 Stimulus.ACC = 0

End If

End If

The above script tells E-Prime to find the x- and y-coordinates of the mouse click when a response is made. The HitTest method determines the string name of the SlideText object at the specified coordinates. If the mouse click occurs within a SlideText object, the name of the object is returned. If the mouse click occurs in another area of the display, a null value is returned. The DoHitTest InLine then compares the name returned by the response to the name designated in the TrialList as the CorrectAnswer. If they match, the response is scored as correct. If they do not, the response is incorrect.

See Example: Response Areas For Mouse Input.es

Note: For more information, please refer to the SlideState object and SlideState.HitTest topics in the E-Basic Help.

How To Rerun Error Trials

· Examines the accuracy of the response on each trial.

· For incorrect trials (Stim.ACC = 0), write the trial info to a List, which will be launched after all trials are run to rerun error trials.

For example: The following inline should be placed at the end of each trial:

'On incorrect trials, write the current trial info to the

'RerunList object, which is run after TrialList.

If Stim.ACC = 0 Then

g_numErr = g_numErr + 1

If g_numErr > 1 Then

RerunList.AddLevel g_numErr

End If

RerunList.SetWeight g_numErr, 1

RerunList.SetProc g_numErr, "RerunProc"

RerunList.SetAttrib g_numErr, "Stimulus", c.GetAttrib("Stimulus")

RerunList.SetAttrib g_numErr, "CorrectAnswer", c.GetAttrib("CorrectAnswer")

End if

And the following after the trial list:

'If errors occur, run RerunList

'Set number of samples from ErrorCount

If g_numErr > 0 Then

Set RerunList.TerminateCondition = Cycles(1)

Set RerunList.ResetCondition = Samples(g_numErr)

RerunList.Reset

Else

'No error trials to run

GoTo EndOfBlock

End If

This procedure reruns trials only once, but could be written to rerun trials until answered correctly.

See Example: RerunErrors.es

How to Collect Input While InLine Script is Active

This is useful when you want to do something while waiting for a response, or if you need to run many stimuli and collect only one response. In this case, instead of an inline you can put the stimuli.

Input collection can be done by simply using an object with a zero duration and preset input properties:

· Duration: 0

· TimeLimit: However long you need (if you just want to run until response, ‘write infinite’ but the inline will have to run its commands in a loop that waits for a response (CollectResp.RT>0), or:

While CollectResp.InputMasks.IsPending())

· End Action: none (When using extended input masks (such as infinite), EPrime encourages to set the End Action on the input masks to ‘none’. The use of the Terminate/Jump End Action options will not behave the same during an InLine w/o further processing.)

See Example: CollectInputDuringInLine.es.

How to Clear a Stimulus While Leaving More Time for Response

There are two methods for clearing a stimulus display after a specified amount of time and allowing additional time for response:

1. Use the "Jump" Response Action in combination with the Label object and extended input. In this block of trials, the stimulus is displayed for 1000 msec. If the subject responds during the stimulus, the stimulus display is terminated and the experiment proceeds directly to the feedback. This is accomplished using the "Jump" option in the Response Action field and specifying a Label. If the response does not come in during the display of the stimulus, the display is cleared, and an additional 1000 msec is allowed for response (extended input is set to 2000 in the Time Limit field). This additional time period is terminated upon the subject's response. The trial times-out if no response is entered within 2000 msec.

2. Use the IsPending method. The Stimulus object is set to display for 1000 msec, then the WaitMore2 object is used to clear the stimulus. The duration for the WaitMore2 object is set to 0, and an InLine object is used to check for input and allow additional time if input has not been received. A Do..Until loop is used to wait until input has been received, or until the 2000 msec max time allowed for response has expired. The result is that the stimulus is always displayed for 1000 msec, and that if additional time is allotted only if the subject does not respond during the display of the stimulus. The additional time is terminated upon response. The trial times-out if no response is entered within 2000 msec.

How to Jump to The End of a Trial Based on an Incorrect Response
The Label object allows you to mark a location in a procedure and to jump to this location based on some criterion (e.g., incorrect response).

1. Assuming you have an attribute ‘CorrectAnswer’ in your TrialList, create an attribute named ‘IncorrectAnswer’. This attribute will be used to indicate when the subject presses an incorrect answer to jump to the end of the trial. Essentially, the values would be the opposite values of the CorrectAnswer attribute. For example:
	
	CorrectAnswer
	InCorrectAnswer

	Trial1
	1
	2

	Trial2
	2
	1

	Trial3
	2
	1

	Trial4
	2
	1

2. In order to jump based on an incorrect response you must specify two keyboard input devices within the Duration/Input tab of the object collecting the response. The second keyboard device is added because a different action will be taken based on the accuracy of the response. Each of the two keyboard devices look for different responses: one associated with the ‘CorrectAnswer’ and the other with IncorrectAnswer. Each keyboard input device will be associated with either a correct response or an incorrect response by referencing the attributes created in the TrialList (i.e., CorrectAnswer and IncorrectAnswer).
3. For the keyboard input associated with an incorrect response, set the End Action to Jump. When an incorrect response is detected, the code will jump to a specific location within your experiment. To specify the location you wish to jump to you need to insert a Label Object into your experiment (create a Label Object by clicking and dragging the object from the toolbar and place it in the Structure View at the location you wish to jump (i.e., end of the trial). Enter that label’s name in the keyboard input device’s ‘Jump Label’ property. locate the Duration/Input tab for the object collecting the input (i.e., Stimulus). The following properties must be set as specified below for the keyboard input device which will detect an incorrect response:
Allowable Input: [IncorrectAnswer]

Correct Input: [CorrectAnswer]

Input Action: Jump

Jump Label: <lableName>

4. As for the second keyboard input device which will detect a correct response, you must set the properties on the Duration/Input tab as follows:
Allowable Input: [CorrectAnswer]

Correct Input: [CorrectAnswer]

Input Action: Terminate

How to Animate!

See example: SpriteAnimation.es, AnimateCanvas.es
These examples illustrate the use of the Canvas object, off-screen canvases, the Rect structure, transparency and synchronization with the redrawing of the screen in order to present apparent motion - smooth animation.

The Canvas and CreateCanvas methods of the Display object are used to manipulate the current and off-screen canvases. The SourceColorKey method of the Canvas object and the ebEffectSourceColorKey parameter used with the Copy method of the Canvas method are used to present transparency. The Rect structure is used to track the location of small images written over the master image.

A Wait for Vertical Blank command assures that drawing and copying times are stable, and the apparent movement is smooth as a result.

This requires a lot of scripting, recommended for advanced users only.

How to Create Checkboxes on the Screen

See example: GridSample.es

You may create checkboxes for user input on the screen with the capability of allowing the user to respond by clicking the checkbox or the word itself in order to register a response. This requires the use of a user-defined type to define the checkboxes. The Checkbox type should be defined in the user script and the checkboxes initialized and drawn in inlines in the code. This requires a lot of scripting, and the example (GridSample.es) can be copied and modified.

How to Run a List Based on User Input

The contingent branching paradigm allows you to choose a running List based on subject or experimenter input.

1. Use a TextDisplay or a message box at the beginning of the experiment to a menu of choices and collects a response.

2. In an InLine object that follows, evaluate the response collected and run one List or another, based on the response. An If...Then statement is used to conditionally run one of available Lists. The Lists are run via the List.Run method. Note that the Context object variable, c, is passed to this method (List.Run c) so that its attributes can be referenced within the appropriate context. Since the Lists and accompanying procedures are only run when chosen, and not at every run, the are all located in Unreferenced E-Objects.

Another contingent branching sample can be found in the section 4.7.4.1 of the E-Prime User's Guide.

TIPS

Good to Know

· If E-Prime does not have to clear the screen before each new image is loaded, faster loading time is facilitated. Furthermore, if it is a viable option, cutting down the image size would likely allow the images to load faster, as would deleting stretching/shrinking options (if you are using any) within E-Prime.

· When using the OnsetSignal, the code is actually sent exactly at the OnsetTime of the object that sends it. Any OnsetDelay will also delay the code.

· It is NOT possible to set the absolute volume of the sound card through E-Prime. By default, E-Prime does not alter the Windows volume settings, but rather works "with" the current setting.

SoundDevice.Volume controls the master volume in E-Prime
SoundBuffer.Volume controls the wav file volume. The maximum volume is 0, which means the volume can only be attenuated. The Valid values for Volume range from –10,000 to 0. The value 0 represents no attenuation; this is the original, unadjusted volume in the .wav file. The value -10,000 represents the original volume attenuated by 100 dB, which for all practical purposes is silence. Notice that dB values are not linear. The value is in "hundredths of decibels". So -10000 (then thousand) would be -100db which is considered silence.

-10000=-100db (silence)
-1000 = -10db
-100 = -1db
-500 = -5db

What to do if you need to keep the sound of a WAV file constant on each computer no matter what the Windows Volume is set to? Most sound cards have two outputs. One is the unamplified line output. The other is the amplified output which varies from sound card to sound card. The output speakers adjust the actual volume based on their amplification. The short story is, the only way to make things the same across all computers is to max (set to 0) the volume in Eprime and then use the line output with the identical speakers attached to the computer.

Reference:
http://www.phys.unsw.edu.au/~jw/dB.html
http://www2.sfu.ca/sonic-studio/handbook/Decibel.html

Objects to Read About:

· Summation - used to collect observations of data and retrieve statistics concerning those observations.

· Rect – Define a rectangle on a canvas, used for copying images.

· Label – enables jumping (using the goto command) to a specified location, for example if Accuracy is good enough, jump over a feedback screen warning about low accuracy. Another example: if this is the last block, go to a label object after a ‘Break’ screen.

Subjects to Read About

· Nesting lists (pages 35, 44 in the User’s Guide)

· Display.WaitForVerticalBlank (chapter 3 in the user’s guide)

· Display.CalculatedRefreshDuration

Known issues and bugs
Referencing to a context object attribute from within a list

Say you want to set a few attributes globally (i.e, in the context):

c.setAttrib "att1", 1

c.setAttrib "att2", 2

And then refer to them from within a list, like so:

ID
Code

1
[att1]

2
[att2]

Inside the inline object/s of the trial, call the attribute using:

c.getAttrib("Code").

This will use the value in "att1" in the first trial, and "att2" in the second trial.

This is instead of using the normal routine:

List.getCurrentAttrib("Code").

